Any questions do not hesitate to contact.
#include <bits/stdc++.h>
using namespace std;
long long int _mergeSort(int arr[], int temp[], int left, int right);
long long int merge(int arr[], int temp[], int left, int mid, int right);
/* This function sorts the input array and returns the
number of inversions in the array */
long long int mergeSort(int arr[], int array_size)
{
int* temp = (int*)malloc(sizeof(int) * array_size);
return _mergeSort(arr, temp, 0, array_size - 1);
}
/* An auxiliary recursive function that sorts the input array and
returns the number of inversions in the array. */
long long int _mergeSort(int arr[], int temp[], int left, int right)
{
long long int mid, inv_count = 0;
if (right > left) {
/* Divide the array into two parts and call _mergeSortAndCountInv()
for each of the parts */
mid = (right + left) / 2;
/* Inversion count will be sum of inversions in left-part, right-part
and number of inversions in merging */
inv_count = _mergeSort(arr, temp, left, mid);
inv_count += _mergeSort(arr, temp, mid + 1, right);
/*Merge the two parts*/
inv_count += merge(arr, temp, left, mid + 1, right);
}
return inv_count;
}
/* This funt merges two sorted arrays and returns inversion count in
the arrays.*/
long long int merge(int arr[], int temp[], int left, int mid, int right)
{
int i, j, k;
long long int inv_count = 0;
i = left; /* i is index for left subarray*/
j = mid; /* j is index for right subarray*/
k = left; /* k is index for resultant merged subarray*/
while ((i <= mid - 1) && (j <= right)) {
if (arr[i] <= arr[j]) {
temp[k++] = arr[i++];
}
else {
temp[k++] = arr[j++];
/*this is tricky -- see above explanation/diagram for merge()*/
inv_count = inv_count + (mid - i);
}
}
/* Copy the remaining elements of left subarray
(if there are any) to temp*/
while (i <= mid - 1)
temp[k++] = arr[i++];
/* Copy the remaining elements of right subarray
(if there are any) to temp*/
while (j <= right)
temp[k++] = arr[j++];
/*Copy back the merged elements to original array*/
for (i = left; i <= right; i++)
arr[i] = temp[i];
return inv_count;
}
int main()
{
int n;
while(scanf("%d",&n)==1 && n!=0)
{
int arr[n];
for(int i=0; i<n;i++) scanf("%d",&arr[i]);
printf("%lld\n", mergeSort(arr, n));
}
return 0;
}
Keep in touch with Isaac Lozano Osorio!