LCA Algorithm.

Any questions do not hesitate to contact.

/**
 * Author: Dean Zhu
 * Date: 2018-11-15
 * License: CC0
 * Description: Gives the Lowest Common Ancestor.
 * Time: O(N)
 * Status:
 */

const int max_nodes, log_max_nodes;

int num_nodes, log_num_nodes, root; 
vector<int> children[max_nodes];        
// children[i] contains the children of node i int A[max_nodes][log_max_nodes+1];      
// A[i][j] is the 2^j-th ancestor of node i, or -1 if that ancestor does not exist int L[max_nodes];                       
// L[i] is the distance between node i and the root
// floor of the binary logarithm of n 
int lb(unsigned int n) 
{    
	if(n==0)  return -1;    
	int p = 0;    
	if (n >= 1<<16) { n >>= 16; p += 16; }    
	if (n >= 1<< 8) { n >>=  8; p +=  8; }    
	if (n >= 1<< 4) { n >>=  4; p +=  4; }    
	if (n >= 1<< 2) { n >>=  2; p +=  2; }    
	if (n >= 1<< 1) {           p +=  1; }    
	return p; 
}

void DFS(int i, int l) 
{    
	L[i] = l;    
	for(int j = 0; j < children[i].size(); j++)        
		DFS(children[i][j], l+1); 
}

int LCA(int p, int q) {    
	// ensure node p is at least as deep as node q    
	if(L[p] < L[q])  swap(p, q); 

	// "binary search" for the ancestor of node p situated on the same level as q    
	for(int i = log_num_nodes; i >= 0; i--)        
		if(L[p] - (1<<i) >= L[q])            
	p = A[p][i];    
	if(p == q)   return p; 

	 // "binary search" for the LCA    
	for(int i = log_num_nodes; i >= 0; i--)        
	{
	 	if(A[p][i] != -1 && A[p][i] != A[q][i])        
	 	{            
	 		p = A[p][i];            
	 		q = A[q][i];        
	 	}
	 }
    return A[p][0]; 
}

int main(int argc,char* argv[]) 
{    
	// read num_nodes, the total number of nodes    
	log_num_nodes=lb(num_nodes);        
	for(int i = 0; i < num_nodes; i++)    
	{        
		int p;        
		// read p, the parent of node i or -1 if node i is the root
        A[i][0] = p;        
        if(p != -1)  children[p].push_back(i);        
        else  root = i;    
    }    
    // precompute A using dynamic programming    
    for(int j = 1; j <= log_num_nodes; j++)        
    	for(int i = 0; i < num_nodes; i++)            
    		if(A[i][j-1] != -1)  A[i][j] = A[A[i][j-1]][j-1];            
    		else  A[i][j] = -1;
    // precompute L    
  	DFS(root, 0);        
  	return 0; 
  }

Don't miss anything.

Keep in touch with Isaac Lozano Osorio!