Cualquier duda no dudes en contactar.
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 10100;
const int INF = 0x3f3f3f3f;
struct edge{
int from, to, weight;
edge(){}
edge(int a, int b, int c){
from = a;
to = b;
weight = c;
}
};
struct state{
int node, dist;
state(){}
state(int a, int b){
node = a; dist = b;
}
bool operator<(const state &other)const{ // sobrecarga de operadores para ordenar
return other.dist < dist;
}
};
vector<edge> graph[MAXN];
int dist[MAXN];
int paths[MAXN];
int N,E;
//https://www.geeksforgeeks.org/number-of-shortest-paths-in-an-undirected-weighted-graph/
int dijkstra(int start, int end){
dist[start] = 0;
paths[start] = 1;
priority_queue<state> pq;
map<pair<int,int>,bool> settled;
pq.push(state(start, 0));
while(!pq.empty()){
state cur = pq.top(); pq.pop();
for(int i=0;i<graph[cur.node].size();i++){
int dest = graph[cur.node][i].to;
if(settled[make_pair(dest,cur.node)]) continue;
int cost = dist[cur.node] + graph[cur.node][i].weight;
if(dist[dest] > cost) {
dist[dest] = cost;
pq.push(state(dest, graph[cur.node][i].weight + cur.dist));
paths[dest] = paths[cur.node];
}
else if (dist[dest] == cost) {
paths[dest] += paths[cur.node];
}
settled[make_pair(dest,cur.node)]=true;
}
}
return paths[end];
}
int main(){
while(scanf("%d %d",&N,&E)==2) { ;
for (int i = 0; i <= N; i++) { dist[i]=INF; paths[i]=0; graph[i].clear(); } // limpia el grafo
for (int i = 0; i < E; i++) {
int from, to, weight;
scanf("%d %d %d", &from, &to, &weight);
graph[from].push_back(edge(from, to, weight));
graph[to].push_back(edge(to, from, weight)); // borrar linea si es dirigido
}
printf("%d\n",dijkstra(1, N));
}
return 0;
}
Sigue en contacto con Isaac Lozano Osorio!