Cualquier duda no dudes en contactar.
// Gauss-Jordan elimination with full pivoting.
//
// Uses:
// (1) solving systems of linear equations (AX=B)
// (2) inverting matrices (AX=I)
// (3) computing determinants of square matrices
//
// Running time: O(nˆ3)
//
// INPUT: a[][] = an nxn matrix
// b[][] = an nxm matrix
//
// OUTPUT: X = an nxm matrix (stored in b[][])
// Aˆ{-1} = an nxn matrix (stored in a[][])
// returns determinant of a[][]
/*#include <bits/stdc++.h>
using namespace std;
const double EPS = 1e-10;
typedef vector<int> VI;
typedef double T;
typedef vector<T> VT;
typedef vector<VT> VVT;
T GaussJordan(VVT &a, VVT &b) {
const int n = a.size();
const int m = b[0].size();
VI irow(n), icol(n), ipiv(n);
T det = 1;
for (int i = 0; i < n; i++) {
int pj = -1, pk = -1;
for (int j = 0; j < n; j++) if (!ipiv[j])
for (int k = 0; k < n; k++) if (!ipiv[k])
if (pj == -1 || fabs(a[j][k]) > fabs(a[pj][pk])) { pj = j; pk = k; }
if (fabs(a[pj][pk]) < EPS) { cerr << "Matrix is singular." << endl; exit(0); }
ipiv[pk]++;
swap(a[pj], a[pk]);
swap(b[pj], b[pk]);
if (pj != pk) det *= -1;
irow[i] = pj;
icol[i] = pk;
T c = 1.0 / a[pk][pk];
det *= a[pk][pk];
a[pk][pk] = 1.0;
for (int p = 0; p < n; p++) a[pk][p] *= c;
for (int p = 0; p < m; p++) b[pk][p] *= c;
for (int p = 0; p < n; p++) if (p != pk) {
c = a[p][pk];
a[p][pk] = 0;
for (int q = 0; q < n; q++) a[p][q] -= a[pk][q] * c;
for (int q = 0; q < m; q++) b[p][q] -= b[pk][q] * c;
}
}
for (int p = n-1; p >= 0; p--) if (irow[p] != icol[p]) {
for (int k = 0; k < n; k++) swap(a[k][irow[p]], a[k][icol[p]]);
}
return det;
}
int main() {
const int n = 4;
const int m = 2;
double A[n][n] = { {1,2,3,4},{1,0,1,0},{5,3,2,4},{6,1,4,6} };
double B[n][m] = { {1,2},{4,3},{5,6},{8,7} };
VVT a(n), b(n);
for (int i = 0; i < n; i++) {
a[i] = VT(A[i], A[i] + n);
b[i] = VT(B[i], B[i] + m);
}
double det = GaussJordan(a, b);
// expected: 60
cout << "Determinant: " << det << endl;
// expected: -0.233333 0.166667 0.133333 0.0666667
// 0.166667 0.166667 0.333333 -0.333333
// 0.233333 0.833333 -0.133333 -0.0666667
// 0.05 -0.75 -0.1 0.2
cout << "Inverse: " << endl;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++)
cout << a[i][j] << ' ';
cout << endl;
}
// expected: 1.63333 1.3
// -0.166667 0.5
// 2.36667 1.7
// -1.85 -1.35
cout << "Solution: " << endl;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++)
cout << b[i][j] << ' ';
cout << endl;
}
}
*/
Sigue en contacto con Isaac Lozano Osorio!